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Abstract
The dielectric and conductometric properties of aqueous polyelectrolyte
solutions present a very complex phenomenology, not yet completely
understood, differing from the properties of both neutral macromolecular
solutions and of simple electrolytes. Three relaxations are evident in dielectric
spectroscopy of aqueous polyelectrolyte solutions. Near 17 GHz, water
molecules relax and hence this highest frequency relaxation gives information
on the state of water in the solution. At lower frequencies in the MHz range,
free counterions respond to the applied field and polarize on the scale of
the correlation length. This intermediate frequency relaxation thus provides
information about the effective charge on the polyelectrolyte chains, and the
fraction of condensed counterions. However, the presence of polar side chains
adds a further polarization mechanism that also contributes in this intermediate
frequency range. At still lower frequencies, the condensed counterions polarize
in a non-uniform way along the polyelectrolyte chain backbone and dielectric
spectroscopy in the kHz range may determine the effective friction coefficient
of condensed counterions. In this review, we analyse in detail the dielectric
and conductometric behaviour of aqueous polyelectrolyte solutions in the light
of recent scaling theories for polyelectrolyte conformation and summarize the
state-of-the-art in this field.

1. Introduction

Although the dielectric method has been established for well over 100 years, it is still one of the
most important techniques for studies of the structure and dynamics of polymer solutions. This
is because it can investigate the relaxation processes occurring in aqueous polymer solutions
in an extremely wide range of characteristic times, roughly from 10−12 to 103 s [1–4].

The principles of measurement are very simple. The electrical impedance of an appropriate
device containing the sample to be investigated is measured as a function of the frequency of the

0953-8984/04/491423+41$30.00 © 2004 IOP Publishing Ltd Printed in the UK R1423

http://stacks.iop.org/cm/16/R1423


R1424 Topical Review

applied electric field. However, various limitations have hampered the application of dielectric
spectroscopy to aqueous polyelectrolyte solutions. There are three reasons for this. Firstly,
the dielectric spectra generally extend from hertz to gigahertz frequencies, requiring diverse
equipment to obtain comprehensive data for a given system and a rather sophisticated analysis
of the data in order to separate the different contributions. Secondly, aqueous systems usually
display a very high ionic electrical conductivity which causes a giant frequency-dependent
dielectric dispersion, falling in the low-frequency tail of the spectrum that generally masks
the relaxations associated with the polymer component. Thirdly, there is a strong polarization
in the vicinity of the electrodes that can dwarf the relaxation of interest in the sample. In
section 2 we describe the methods that have been developed to overcome these limitations.

Extensive reviews and whole books have been devoted to the properties of polyelectrolyte
solutions [5–11] and no attempt is made here to provide a comprehensive review of the
vast literature that exists on these subjects. The present work, aimed to a more limited
and practical scope, is meant to demonstrate the application of dielectric spectroscopy to
aqueous polyelectrolyte solutions, with the intent of gaining information, at a molecular
level, on the peculiar behaviour of these systems. This review is organized as follows.
After a brief phenomenological introduction of the dielectric parameters used to describe the
electrical behaviour of aqueous polyelectrolyte solutions, we discuss the different experimental
methods employed in dielectric measurements in section 2, focusing on the correction of the
electrode polarization effect. Section 3 reviews simple ideas about counterion condensation and
polyelectrolyte conformation in solution. In section 4 we analyse the different contributions
to a typical dielectric spectrum of polyelectrolyte solutions in the frequency range between
kHz and GHz. Finally, in section 5, we discuss the electric conductivity of these systems in
the light of both counterion condensation theory and the scaling approach.

1.1. Dielectric spectra of polyelectrolyte solutions: general

The dielectric and conductometric spectra of aqueous polyelectrolyte solutions, extending over
a wide frequency range, present a very complex shape, involving three or more different,
partially overlapping, contributions, each of them originated by different molecular level
mechanisms [7, 12]. They may be classified as due to polyion dipolar orientation relaxation,
polarization of condensed counterions, polarization of the ionic atmosphere, long-range
solvent-ordering effects and, at higher frequencies, to orientational polarization of the water
molecules, possibly modified by the interaction with the solute.

Despite the variety of mechanisms involved in the dielectric response of aqueous polymer
solutions, some general features emerge that are common to all polyelectrolyte solutions
investigated to date. The dispersion region in the lower frequency range, typically around
some tens of kilohertz, is characterized by a large dielectric increment, apparently arising
from relaxation of condensed counterions along the polyion chain. This effect depends,
in a rather complicated way, on the charge distribution along the chain, governed by the
counterion condensation phenomena [5, 13, 14], occurring when the charge density on the
polyion exceeds a critical value. This phenomenon is perhaps the most prominent feature of
aqueous polyelectrolyte solutions and divides the counterions into two types. One type are
‘bound’ counterions which stay in the vicinity of the charged polymer and the other type are
‘free’ counterions which dissociate from the polymer chain, interacting through a screened
Coulomb (Yukawa) potential:

U

kT
= lB

r
exp(−r/rD). (1)
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Figure 1. The dielectric dispersion of water at 0.2 ◦C [15]. The broken curve represents a single
Debye relaxation and the solid curve a superposition of two Debye relaxations. At this temperature,
the dielectric parameters that characterize the two dispersions are [15]:�ε1 = 87.57, ν1 = 9.0 GHz,
�ε2 = 6.69, ν2 = 177 GHz and ε∞ = 3.92. Usually, in dielectric investigations of polyelectrolyte
aqueous solutions up to a few GHz, the dielectric dispersion of water is described by a single Debye
relaxation or, more precisely, by a Cole–Cole relaxation function with a relaxation-time spread
parameter close to unity (α ≈ 0.98, see figure 8) (in this case, see appendix for the evaluation of
the parameters of relaxation).

This equation applies for univalent counterions interacting with each other at separation
r, where

lB = e2

εkT
(2)

is the Bjerrum length (e is the elementary charge and ε is the dielectric constant of the solvent
medium) lB = 7.12 Å at 20 ◦C in water and

rD =
(

4πlB
∑

i

ci

)−1/2

(3)

is the Debye screening length. The sum in equation (3) is generally taken over all small free
ions present at concentration ci (dissociated ‘free’ counterions and any added salt ions).

The dispersion at high frequency, around some tens of gigahertz, is attributed to the
orientational polarization of water molecules [1, 2], whose relaxation frequency, in the pure
phase, is about 17 GHz at room temperature (see figure 1). Water is the principal component of
most aqueous solutions of interest, and has a large orientational electric polarization. The large
dielectric increment of water (�ε = 75.9 for pure water at 20 ◦C) [2] is partly due to the large
dipole of 1.84 debye for a water molecule and partly caused by the high Kirkwood correlation
factor, associated with the extended network of hydrogen-bonded clusters of water molecules
[15–17]. Although the presence of the charged polymers alters both the dielectric increment
and the relaxation frequency, the main characteristics do not differ from those of the bulk
water dispersion, the difference being confined to a shift in the relaxation time and a generally
moderate decrease in the dielectric increment. These changes could be important to control
the biological function of a large variety of biopolymers but they seem to have little influence
on the dynamical properties associated with polymers in aqueous solution. The water within
a few molecular diameters of a polyion (so-called bound water) [2] has appreciably different
properties than bulk water. The relaxation of this hydration layer depends on the organization



R1426 Topical Review

of that layer, ranging from kHz for ice-like structures to hundreds of MHz for less hindered
structural organization.

In the intermediate-frequency range, usually between 1 and 100 MHz, another relaxation
occurs, whose origin has long been controversial. Three ideas have been suggested for this
intermediate frequency relaxation.

(1) The van der Touw and Mandel model [18, 19] envisions the polyion as a sequence of
subunits and counterion fluctuation along each of them imparts an induced dipole moment
along the polymer chain whose relaxation causes the observed dielectric dispersion. This
proposed mechanism is independent of the polyion molecular weight and we shall use
this essential idea to describe the low-frequency relaxation of polyelectrolyte solutions in
section 4.3.

(2) The theory developed independently by Dukhin and Fixman strongly suggested that the
intermediate frequency relaxation is caused by motion of free counterions. This prompted
later models of Mandel to focus on the exchange between bound and free counterions, in
a direction perpendicular to the polyelectrolyte chain [20, 21]. Ito et al [22] expanded
on this idea to predict the observed power-law behaviour of relaxation time [23, 24] and
dielectric increment [22, 25, 26] as a function of polyelectrolyte concentration, from the
simple assumption that the intermediate frequency relaxation results from the fluctuation
of free counterions on the scale of the correlation length that is characteristic of semi-dilute
polyelectrolyte solutions. This model is described in section 4.2.

(3) For polyions that have a dipolar component perpendicular to the chain contour, Mashimo
et al [27, 28] attributed the molecular mechanism responsible for the intermediate relaxation
region to electrical dipole fluctuations caused by Brownian motion of the polymer
chain. The influence of the local structure of the chain has been recently investigated
in the case of poly(lysine), poly(α-glutamate) and poly(γ-glutamate) aqueous solutions
[29–31].

Generally, a dependence of the dielectric parameters on the polymer concentration should
be expected. This dependence is particularly intriguing, because of the delicate interplay
between local chain conformation and effective polyion charge, each of which can depend on
the concentration, flexibility and contour length of the polyelectrolyte, and its interactions with
small ions (counterions and added salt).

In the remainder of this section, we briefly summarize the main aspects of current
understanding of dielectric response. These features are illustrated with dielectric spectra
of two representative polyelectrolyte solutions.

1.2. Complex dielectric constant: phenomenology

From an experimental point of view, the dielectric response ε∗(ω) of a given system
to an external oscillatory electric field of angular frequency ω is given by the linear
relationship

〈 �J〉 = iωε0ε
∗(ω) �E (4)

between the volume-averaged current density

〈 �J〉 = 1

V

∫
V

�J(�r ) dV (5)
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and the electric field

�E = − 1

V

∫
V

∇	(�r ) dV , (6)

where 	(�r ) is the electric potential at position �r, V is a sufficiently large system volume and
ε0 is the dielectric constant of free space. Regardless of the origin of the relaxation process,
the complex dielectric constant ε∗(ω) is related to the time correlation function φ(t) of the
macroscopic dipole moment of the volume V in time t in the absence of an applied electric
field, by the one-side Fourier transform

ε∗(ω) − ε∞
εs − ε∞

= 1 − iω
∫ ∞

0
φ(t) exp(−iωt) dt, (7)

where εs and ε∞ are the limiting low- and high-frequency permittivities, respectively.
If φ(t) is characterized by a single exponential decay with a time constant τ, equation (7)

yields the well-known Debye relaxation function [1]

ε∗(ω) − ε∞
εs − ε∞

= 1

1 + iωτ
. (8)

For many materials, the dipole correlation function φ(t) exhibits a non-exponential shape,
often represented by the Kohlrausch–Williams–Watts equation [32, 33]

φ(t) = exp
(
− t

τ

)γ

(9)

with 0 < γ < 1, the distribution parameter. This relaxation function leads to a dielectric
relaxation function analogous to the Cole–Davidson function which has been extensively used
to describe the frequency domain dielectric relaxation data. A detailed comparison of the two
non-exponential relaxation functions, that behave similarly in a time scale or frequency scale
over several decades, has been carried out by Lindsey and Patterson [34] and by Alvarez et al
[35].

An extensively used empirical modification of equation (8) reads

ε∗(ω) − ε∞
εs − ε∞

= 1

[1 + (iωτ)β]α
, (10)

resulting in the Cole–Cole relaxation function (α = 1, 0 < β < 1) [36], the Cole–Davidson
relaxation function (β = 1, 0 < α < 1) [37, 38] or the Havriliak–Negami relaxation function
(0 < α < 1, 0 < β < 1) [39]. Equation (10), which contains two further parameters (α
and β) in comparison with the simple Debye relaxation (equation (8)), is often found to give a
good description of the asymmetric loss spectra observed in polymer solutions over the whole
frequency interval where the relaxation falls.

Alternately, for a non-single-exponential decay correlation function, equation (8) may be
rewritten, by introducing a distribution of relaxation times g(τ), as

ε∗(ω) − ε∞
εs − ε∞

=
∫

g(τ) dτ

1 + iωτ
. (11)

Explicit functional forms for the distribution function g(τ) leading to Cole–Cole, Cole–
Davidson and Havriliak–Negami relaxation functions have been discussed by Böttcher and
Bordewijk [40]. In cases where two or more relaxation processes overlap, two or more distinct
relaxation functions may be employed.
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For a polymer chain with degree of polymerization N, the response function φ(t) is written
as a normalized correlation function

φ(t) =

N∑
i=1

〈µi(t)µi(0)〉

N∑
i=1

〈µi(0)µi(0)〉
, (12)

where µi(t) is the dipole moment of the ith repeat unit at time t. Equation (12) can be
decomposed [33, 41, 42] into contributions of the dipole moment components perpendicular
µ⊥ and parallel µ‖ to the chain contour

φ(t) =
〈

N∑
i=1

µ
‖
i (t)

N∑
i=1

µ
‖
i (0) +

N∑
i=1

µ⊥
i (t)

N∑
i=1

µ⊥
i (0)

〉
. (13)

The laws governing the time decay of φ(t) are directly related to the structural and kinetic
properties of the sample and characterize the macroscopic electrical properties of the system
investigated. The first term of equation (13) reflects the overall rotation of the polymer
molecule and, if the polymer is completely random, the dipole correlation is given by

φ‖(t) = (µ‖)2〈Ri(t)Ri(0)〉, (14)

where Ri(t) is the end-to-end vector of the ith segment which causes the low-frequency
dispersion process. The second term of equation (13) represents the autocorrelation function
of the perpendicular dipole moment component. This term is sensitive to segmental motion of
the polymer chain and can contribute to the intermediate frequency relaxation. The presence
of a dipole component perpendicular to the polyion backbone, according to equation (13), has
been used in the analysis of the intermediate relaxation process occurring in poly(amino acid)
aqueous solutions [29, 43]. According to Mashimo [27, 28], it is noteworthy that orientation
of the ith perpendicular component requires a conformational change of neighbouring repeat
units that could be the origin of the subunits in the Mandel model [7].

1.3. Dielectric loss and electrical modulus

The complex dielectric constant ε∗(ω) is usually written as

ε∗(ω) = ε′(ω) − i
σ(ω)

ε0ω
, (15)

where ω is the angular frequency (2π times the frequency ν in Hz), ε ′(ω) is the real part of the
complex dielectric constant, σ(ω) is the total conductivity and ε0 is the permittivity of vacuum.
The measured dielectric loss σ(ω)/(ε0ω) is made up of two components. One is due to the
dielectric process ε′′(ω) and the other is due to the dc electrical conductivity σ0, which is the
low-frequency limit of σ(ω). The general expression of equation (15) is then

ε∗(ω) = ε′(ω) − i

[
ε′′(ω) + σ0

ε0ω

]
. (16)

The dc conductivity loss σ0/(ε0ω) increases with decreasing frequency and often obscures
ε′′(ω) due to the dielectric processes of interest at the lowest frequencies. As stated above, this
circumstance makes low-frequency dielectric measurements difficult and the interpretation of
the data doubtful, if a rigorous and powerful data analysis is not performed.
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In some cases, to overcome this difficulty, an alternative approach to calculate the dielectric
parameters from the electrical modulus can be adopted. The complex electrical modulus (or
complex inverse permittivity) M∗(ω) can be used to represent the frequency-dependent data:

M∗(ω) = 1

ε∗(ω)
= M ′(ω) + iM ′′(ω). (17)

The real and imaginary parts of the electrical modulus are

M ′(ω) = ε′(ω)

[ε′(ω)]2 + [ε′′(ω) + σ0/ε0ω]2 , (18)

M ′′(ω) = ε′′(ω) + σ0/ε0ω

[ε′(ω)]2 + [ε′′(ω) + σ0/ε0ω]2 . (19)

This formalism is particularly advantageous when the system exhibits a frequency-
dependent conductivity, as it usually occurs in polymer solutions, since the monotonically
increasing function describing the total loss transforms into a curve exhibiting a peak
corresponding to a particular frequency that varies proportionally with the low-frequency
conductivity σ0 [44]. This peak is shifted towards higher frequencies, simplifying the de-
convolution of the dielectric dispersion from the contributions due to the dc conductivity.

The fundamental effects in polyion solutions influencing the overall dielectric response in
different frequency ranges [45] are classical dipole orientation, polarization of the counterion
atmosphere, polarization associated with the internal degrees of freedom of the polymer
chain and dielectric relaxation caused by fast chemical relaxation processes. They provide
information not only about structural characteristics (dipole moments, rotational diffusion
coefficients) but also on properties of the counterion atmosphere (ion mobility and density,
‘effective’ dielectric constant) as well as on kinetic parameters (chemical relaxation time, rate
constants) and on the influence of an electric field on the chemical equilibria in the solution.

1.4. Dielectric spectra of polyelectrolyte solutions: two examples

In this section, we summarize the results of dielectric measurements on two typical
polyelectrolytes, a double-stranded helical molecule with a large persistence length (DNA) and
a synthetic polyion considered as a model system for a flexible chain polyelectrolyte (sulfonated
polystyrene). In both examples, different relaxation regions, covering the frequency range from
1 kHz to some tens of GHz, have been observed.

The presence of negatively charged phosphate groups in the nucleotide chain makes DNA
a highly charged linear polyelectrolyte. A variety of molecular mechanisms, on different
length scales, simultaneously contribute to the dielectric response of DNA. A typical dielectric
spectrum in the range from 1 kHz to 70 GHz, obtained by merging dielectric spectra measured
by Takashima et al [46] and by the Mandel group [19], is shown in figure 2 (upper panel).
Three dielectric dispersions are evident, a low-frequency dispersion located between 1 and
100 kHz, an intermediate-frequency dispersion between 1 and 500 MHz and a high-frequency
dispersion above 1 GHz.

The low-frequency (10–100 kHz) relaxation is not caused by the rotation of the permanent
dipole moment of the entire DNA molecule, since the dielectric increment of this low-frequency
relaxation increases with added salt [47, 48] but, instead must be assigned to the condensed
counterion polarization along the whole polyion. The intermediate-frequency relaxation
is attributed to fluctuations of counterions along some well-defined sections of the chain
(‘subunits’ in the Mandel model and the semi-dilute correlation length in the Ito model).
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Figure 2. Top: permittivity of 1% DNA aqueous solutions over the frequency range from 10 kHz
to 100 GHz. The data are obtained by merging dielectric spectra in the low-frequency range from
Mandel and co-workers [19] at 0.17% and spectra in the high-frequency range from Takashima et al
[46] at 1%. The Mandel data have been shifted vertically to match the different DNA concentrations.
The inset shows the dielectric loss related to the intermediate and high-frequency relaxations.
Bottom: permittivity of NaPSS (Mw = 177 000) at three different concentrations: (◦) 1.380 g l−1,
(�) 0.450 g l−1 and (♦) 0.090 g l−1. The drawn curve is the fitted double Cole–Cole relaxation
function (data from Mandel [49]).

The high-frequency relaxation is due to the orientational polarization of water molecules (see
figure 1).

The second example, shown in figure 2 (lower panel), shows the dielectric response of
three aqueous solutions of sodium poly(styrene sulfonate) (NaPSS), recently investigated by
Mandel [49] up to a frequency of 100 MHz, below the high-frequency relaxation of water.
For sufficiently high molecular weights, two separate dispersion regions are observed, whose
main features can be summarized as follows. The low-frequency dispersion can be quite
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large, with a specific dielectric increment and relaxation time that are molecular weight
dependent. Conversely, the parameters of the generally smaller, higher-frequency dispersion
are independent of molecular weight. All parameters depend on polyelectrolyte concentration
and also depend on the type and concentration of the added salt. Both observed dispersions
are attributed to counterion fluctuations on two different typical distances associated with the
polymer conformation.

Despite considerable differences in the conformations of the polymers in these two
examples, the dielectric spectra are quite similar. This is not surprising, since both polymers
are essentially immobile on these time scales and hence, the relaxations near 10 kHz and near
1 MHz are believed to be due to motion of sodium counterions.

2. Experimental methods

2.1. Circuitry and impedance analysers

We will discuss in some detail only frequency domain dielectric spectroscopy (FDDS), which is
usually employed for the measurement of the complex permittivity of samples characterized by
high permittivity and conductivity, such as aqueous electrolytes. In the frequency domain, the
complex permittivity of the sample can be measured, at various discrete frequencies, with high
accuracy, to determine the dielectric spectrum in a specific frequency range. However, time
domain spectrometers have been recently improved in accuracy and in their performance with
aqueous, highly conductive samples [4, 50]. An excellent review on the use of time domain
dielectric spectroscopy in investigating emulsions and colloidal systems has been recently
published [51].

The sample is usually contained in an appropriate sample holder, the ‘dielectric cell’, even
though for special purposes dielectric probes have been designed that can be immersed into
the liquid or simply held near its surface [52, 53]. Since, different parasitic effects dominate
in different frequency ranges, it is not possible to devise a single dielectric cell that can be
effectively employed in the whole frequency range of interest in the study of polyelectrolyte
solutions (from a few kHz up to a few GHz). While at the low-frequency end of the spectrum
(below 1 MHz) the plane parallel capacitor geometry is usually adopted [54–58], at higher
frequencies, in order to reduce inductive effects, open-ended coaxial probes are preferable
[59, 60].

The possibility of using simple and accurate bridge techniques for the measurement makes
FDDS very attractive. Although the upper frequency limit of most commercial bridges was in
the past limited to a few hundred MHz [57, 61, 62], commercial impedance analysers based
on the current–voltage method (‘auto-balancing’ bridges) are now available [63, 64] that allow
precise, rapid and automated measurements, over a wide impedance and frequency range (up
to a few GHz).

From the measured impedance, the dielectric parameters that characterize the sample
have to be extracted and separated from the contributions of cell geometric capacitance,
connecting cables, etc. At the low-frequency end of the spectrum, where the geometry is
that of a ‘plane capacitor’, the usual procedure is to model the cell as seen by the meter using
an equivalent circuit, with elements that take into account the different contributions to the total
measured impedance [56, 57, 61, 62, 65]. At higher frequencies, where the approximation of
‘concentrated elements’ is no longer valid, different methods are used [59, 66, 67].

2.1.1. Low-frequency range (Hz to MHz). In the low-frequency range, the measuring cell can
be described by means of the equivalent elements circuit as shown in figure 3 [57], however
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R s L s

C f C
R

Figure 3. The equivalent circuit of the measuring cell for low-frequency measurements, as seen by
the meter. Rs, Ls and Cf represent parasitic effects (connecting cable impedance, fringe effects,
etc); C0 is the empty cell capacitance, C = ε′C0 is the sample capacitance and R = ε0/(σC0) is
the sample resistance.

other equivalent circuits have been proposed [56, 61, 62, 65, 68]. Usually, the series resistance
Rs is small compared with the total impedance and can be neglected. The contribution to the
series inductance Ls due to connecting cables is also negligible at low frequencies, but the
contribution of the cell itself, usually, cannot be neglected, since the parallel plate geometry
shows a high self-inductance. For a parallel plate capacitor, with circular electrodes separated
by a distance d, and where the current is fed from the centre (radial current), the self-inductance
is estimated from the expression [69]

L = µ0

4π

d

2
(20)

(µ0 is the magnetic permeability of free space µ0 = 4π × 10−7 H m−1). With this geometry,
considering electrodes 2 cm in diameter and 1 mm apart, filled with an aqueous solution (ε′ �
80), at frequencies of about 1 GHz the magnitude of the inductive impedance (|ZL| = ωL)
becomes comparable to the capacitive one (|ZC| = 1/ωC). However, with the simple plane
parallel geometry also at frequencies of a few tens of MHz, the effect of the parasitic inductance
can produce unacceptable distortion in the measured dielectric spectra. The use of a cylindrical
grounded shield, whose axis is identical with that of the cell (‘nearly coaxial’ geometry [58]),
effectively reduces both the stray-field effects (fringe effects, represented by the capacitance
Cf ), and the self-inductance [58, 70]. In figure 3, C and R, representing the capacitance
and the resistance of the sample, can be expressed in terms of the sample permittivity ε ′ and
conductivity σ as

C = C0ε
′ and 1/R = C0σ/ε0, (21)

where C0 is the so-called ‘cell constant’, i.e. the capacitance of the empty cell, that also includes
all the effects due to field inhomogeneities.

The different parameters that characterize the equivalent circuit can be obtained by means
of proper calibration procedures, using different standard liquids of known permittivity and
conductivity [57].

A very simple and reliable calibration procedure consists of measuring the cell impedance
in three different configurations: shorted cell electrodes (Zs), the empty cell (Ze), and the cell
filled with a standard sample (Zl) of known dielectric permittivity ε′

l and conductivity σl. In
these three configurations, the measured impedances reduce to

Zs = Rs + iωLs, (22)
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Z1

Z2

Z3

Z

Figure 4. In the higher-frequency range, the equivalent circuit of the measuring cell can be
modelled as a T network; Z represents the sample impedance.

Ze = Rs + i

[
ωLs − 1

ω(Cf + C0)

]
, (23)

Zl = Rs + i

{
ωLs − 1

ω[Cf + C0(1 + ε′
l)] − iσlC0/ε0

}
, (24)

respectively. By combining these expressions, the whole set of parameters is easily obtained.
Then, from the measured impedance Z = |Z| cos φ + i|Z| sin φ, and using equations

(21)–(24) (now written for the unknown sample) the total conductivity σ and the dielectric
permittivity ε ′ are calculated as

σ = ε0

C0

|Z| cos φ − Rs

(|Z| cos φ − Rs)2 + (|Z| sin φ − ωLs)2
, (25)

ε′ = 1

C0

{ |Z| cos φ − Rs

ω[(|Z| cos φ − Rs)2 + (|Z| sin φ − ωLs)2]
− Cf

}
. (26)

2.1.2. High-frequency range (MHz to GHz). At higher frequencies (above several MHz),
self-inductance effects become of paramount importance. The simple plane parallel geometry
is no longer effective and the impedance of even the shortest connecting cables is no longer
negligible. At these frequencies, the dielectric cell usually consists of a short section of a
coaxial line, terminated by a standard connector (APC7, for example) directly connected to
the meter [59–61].

The measuring cell can hence be described by means of an equivalent ‘T network’ as
shown in figure 4 [59]. The impedances Z1, Z2 and Z3 can be expressed in terms of the input
and output impedances of a classical four terminal network as

Z1 = Zo1 −
√

Zo2(Zo1 − Zs1), Z2 = Zo2 −
√

Zo2(Zo1 − Zs1), Z3 =
√

Zo2(Zo1 − Zs1),

where Zo1 and Zs1 are the input impedances when the output is open and shorted, respectively,
and Zo2 and Zs2 are the corresponding output impedances.

The impedance as seen by the meter, Zm, can then be written as

Zm = Z1 + Z3(Z2 + Z)

Z3 + Z2 + Z
(27)
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or, equivalently

Zm = Z + (Zs1Zo2/Zo1)

(Zo2/Zo1) + (Z/Zo1)
, (28)

where Z is the sample impedance (see figure 4). From this expression, the sample impedance
Z can be obtained as a bilinear function of the measured impedance Zm, in the form

Z = αZm − β

1 − γZm

, (29)

where α = Zo2/Zo1, β = Zs1Zo2/Zo1 and γ = 1/Zo1.
In practice, the complex parameters α, β and γ , that describe the electrical behaviour

of the measuring cell, taking into account the cell geometry and the parasitic effects, can be
determined by means of a calibration procedure: measuring the impedance when the cell is
empty, shorted and filled with a sample of known permittivity and conductivity or, alternatively,
using three different standard liquids of known dielectric parameters.

In fact, using the result that the composition of two bilinear transformations in the complex
plane is still a bilinear transformation, the complex permittivity ε∗ of the unknown sample
can be determined straightforwardly from the measured complex impedance, Z∗, solving the
bilinear equation [67]

(ε∗ − ε∗
1)(ε

∗
2 − ε∗

3)

(ε∗ − ε∗
2)(ε

∗
1 − ε∗

3)
= (Z∗ − Z∗

1)(Z
∗
2 − Z∗

3)

(Z∗ − Z∗
2)(Z

∗
1 − Z∗

3)
, (30)

where Z∗
j = |Zj|e−iφj , with j = 1, 2, 3, are the complex impedances measured when the

coaxial line cell is filled with three different liquids of known complex dielectric permittivity
ε∗
j , used as calibration standards.

This calibration procedure can have the advantage of using standards whose dielectric
parameters are ‘in the vicinity’ of the unknown sample, making the calibration more precise.
Moreover, the measurement of the cell’s true ‘short’and/or ‘open’ impedance is often difficult,
because of fringe effects and residual admittances.

For example, in the case of polyelectrolyte aqueous solutions, three NaCl solutions of
appropriate molarities, with conductivities extending over the range of the samples investigated,
can be used as reference liquids. For each electrolyte solution, the complex dielectric
permittivity as a function of the electric field frequency ω is written as

ε∗(ω) = ε∞ + εw − ε∞
1 + iωτH2O

+ σ0

iωε0
(31)

where ε∞ is the high-frequency limiting permittivity, εw is the dielectric constant of water at
frequencies below the water relaxation (ω  1/τH2O), τH2O is the relaxation time of water, σ0 is
the dc conductivity (the low-frequency limit of the total conductivity) and ε0 is the permittivity
of vacuum. The parameters εw, ε∞, τH2O and σ0 can be calculated for different molarities and
temperatures [71] (see appendix).

Repeated measurements on reference liquids of known conductivity and dielectric constant
allow to estimate the overall accuracy of the procedure. In the typical range of conductivities
of high charge density polyelectrolyte solutions, from diluted to concentrated regimes, the
overall accuracy has been estimated to be within 2% on ε ′ and within 5% on ε′′ [25], for
sufficiently high frequencies that the dc conductivity can be subtracted. The uncertainties
increase markedly as frequency is lowered, owing to conductivity and electrode polarization
effects dominating the measurements.
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2.2. Analysis of dielectric and conductometric spectra

The dielectric parameters characterizing the dispersion, i.e., the dielectric increment �ε, the
characteristic relaxation time of the process τ and the ‘spread parameters’β and α (see equation
(32), for example), which characterize the distribution of relaxation times around τ, are usually
determined by a non-linear least-squares minimization on the basis of a well-defined relaxation
function such as, for example, the Havriliak–Negami equation (equation (10)) [1, 39, 72]. If
different relaxation phenomena are observed in the frequency range investigated, the dielectric
spectrum is analysed on the basis of a sum of different relaxation functions. As an example,
the dielectric response of a typical polyelectrolyte solution, in the frequency range from a few
kHz to a few GHz, can be described as a sum of three relaxations:

ε∗(ω) = ε′(ω) − iε′′(ω) = �ε1

[1 + (iωτ1)β1 ]α1
+ �ε2

[1 + (iωτ2)β2 ]α2
+ εw − ε∞

1 + (iωτH2O)α
+ ε∞.

(32)

The first term (with a characteristic relaxation frequency of the order of some tens of kHz)
is usually attributed to the polarization of condensed counterions along the whole polymer
chain, while the second is attributed to the free counterion relaxation along some well-defined
characteristic length. Finally, the third term is approximately Debye-like (the spreading
parameter α is near unity, see appendix and figure 8), and takes into account the contribution
of the dielectric response of water. In aqueous solutions, at frequencies above a few tens of
MHz, the orientational relaxation of the water molecules cannot be neglected, considering that
the maximum loss in the dielectric dispersion of pure water occurs at a frequency of about
17 GHz, at room temperature. This dispersion produces an increase of the total conductivity at
frequencies above a few tens of MHz (see, for example, figure 5). This increase represents the
low-frequency tail of the relaxation process associated with the polarization of water molecules,
which in equation (32) is modelled by the Debye function (with α = 1) with a dielectric
increment �εH2O = εw − ε∞, and relaxation time τH2O.

In the example of figure 5, the huge increase in the low-frequency wing of the dielectric
constant is due to the superposition of two effects: a further dispersion mechanism (the ‘low-
frequency dispersion’described by the first term in equation (32)) and the electrode polarization
effect, which will be discussed in section 2.3.

In general, it is difficult to resolve different dielectric dispersions when their relaxation
times are within a factor of ten from each other. Conversely, the assessment of the different
contributions is even more complicated when, from outside the frequency range experimentally
accessible, only the ‘tails’ of different well-separated dispersions partially overlap.

A satisfactory estimate of the parameters of the dispersion can often be obtained by means
of a non-linear least-squares fitting procedure based on the Levenberg–Marquardt algorithm for
complex functions [2]. The method allows the simultaneous fit of the real part (the permittivity
ε ′(ω)) and the imaginary part (the dielectric loss ε′′(ω)) of the complex dielectric constant ε∗(ω)

or, alternatively, the simultaneous fit of ε ′(ω) and the total loss σ(ω)/ε0ω [25, 73]. In this way,
due to the constraints imposed on the fitting procedure by the dispersion relation between the
real and imaginary parts of the complex permittivity, a reliable estimate of the parameters of
the dispersion is obtained, even in the cases where, considering a separate fit, the dispersion
could not have been conveniently resolved.

However, since the whole shape of the dielectric loss spectrum ε′′(ω) depends strongly
on the low-frequency conductivity σ0 ≡ limω→0 σ(ω) to be subtracted from the total loss
σ(ω)/ε0ω, an accurate analysis of the fitting procedure is required. A preliminary simultaneous
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Figure 5. (A) The measured permittivity ε ′ (open symbols) and total conductivity σ (filled
symbols) of aqueous solutions of a typical high charge density polyelectrolyte, NaPAMS (sodium
salt of poly[2-acrylamido-2-methylpropanesulfonate]), as a function of frequency, at two different
polymer concentrations: (�) 40.5 mg g−1; (◦) 1.14 mg g−1; temperature T = 20 ◦C. The inset
shows the corresponding curve for σ/ε0ω, the ‘total’dielectric loss ε′′(ω)+(σ0/ε0ω), also including
the effect of the ohmic (dc) conductivity σ0. The steep increase observed in the conductivity at the
higher frequencies is due to the dielectric polarization of water. At frequencies �100 kHz, the
electrode polarization effect becomes appreciable, as it produces a steep increase in the values
of measured ε ′ and, at the lowest frequencies, a decrease in the conductivity σ. The solid lines
represent the values calculated on the basis of equations (32) and (37) and take into account
the electrode polarization effect. The dielectric parameters were estimated by the simultaneous
fitting of the real and imaginary parts of ε∗(ω), using the procedure described in the text, based
on the Levenberg–Marquardt method for complex functions. (B) An enlarged view of a portion
of (A), showing the ‘intermediate frequency’ relaxation due to the polyelectrolyte; in this case
the ‘low frequency’ relaxation is completely masked by the huge polarization effect, and also
the ‘high-frequency’ relaxation would be difficult to resolve properly without a careful analysis
of the data. In (B), the solid lines are calculated from equation (32), after subtraction of the
polarization effect; for comparison, dotted lines are the calculated ones but without this subtraction
(same as in (A)).

fit of ε ′(ω) and the total loss σ(ω)/ε0ω, with �ε, τ, β, ε∞ and σ0 as free parameters and α = 1,
gives a first rough estimate. From the value of σ0 thus obtained, the dielectric loss is calculated
as ε′′(ω) = [σ(ω) − σ0]/ε0ω and the simultaneous fit is repeated on ε ′(ω) and ε′′(ω). The
whole procedure should be iterated until the set of parameters, �ε, τ, β, ε∞ and σ0, converges
and a good fit is achieved. This procedure gives a set of parameters that describes the observed
behaviour with satisfactory accuracy, even in the case where the dc electrical conductivity of
the samples investigated is relatively high [25, 73].
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2.3. Electrode polarization

In the measurement of the dielectric properties of conductive solutions, the well-known
‘electrode polarization’ effect, mainly due to the spatial charge that accumulates near the
electrodes, represents a serious obstacle. The presence of this electrical ‘double layer’modifies
the field distribution within the sample. This effect, to a first approximation, can be described
as a ‘surface impedance’, mainly capacitive, in series with the sample impedance [74–77].
This electrode impedance makes it difficult, and often even impossible, to resolve the dielectric
dispersions at lower frequencies. For this reason, it is worth to discuss briefly here the different
strategies that can be implemented to cope with this problem.

The many different approaches that have been proposed to correct for the electrode
polarization effects [2] can be roughly grouped in two categories. The first category includes
the methods aimed to eliminate or reduce the impact of the effect. The second group includes
methods for correcting the measured dielectric spectra, taking into account the presence of
surface impedance.

Within the first group, special measurement techniques have been devised such as the
four-electrode method [3, 78, 79], and the electromagnetic induction method [80, 81]. The
four-electrode method is based on the observation that the double layer builds up at the
surface of the two current electrodes, but not at the two inner high-impedance voltage-sensing
electrodes, since in this case the input current is virtually zero. In the electromagnetic induction
method, two toroidal coils are employed as the voltage and current ‘electrodes’and the complex
permittivity is deduced from the measured coupling of the two coils.

An effective and far simpler method to reduce electrode polarization is to use of electrodes
with a large surface area, thus reducing the effect of the double layer capacitance (in series with
the bulk capacitance). To this end, the effective surface of electrodes can be hugely increased
(by a factor of 100–1000 times) with respect to the geometrical surface by using microporous
electrodes. For example, by depositing a layer of ‘platinum black’ (electro-deposited colloidal
platinum), the effective surface area of the electrodes can be substantially increased [82–84].

Other methods are based on the use of a cell with variable electrode spacing [2, 58,
85–87]. Since the sample impedance depends on the electrode spacing, while the polarization
impedance does not, it is possible to separate the contribution of the electrode polarization from
a set of measurements at different spacings. In practice, the capacitance at each frequency is
linear in reciprocal electrode spacing [87] and extrapolated to 1/d = 0 to obtain the sample
capacitance. This method was used by Mandel and co-workers to determine the low-frequency
data in figure 2, for example.

In substitution methods [82, 88–90], the electrode polarization impedance is eliminated by
means of calibration with simple electrolytes of known conductivity. However, these methods
rely on the assumption that the effects on the electrodes of the electrolyte used for calibration
are the same as those of the ions in the sample.

Although many methods have been proposed, an entirely satisfactory solution to the
problem of reducing the electrode polarization is not known. This is in part due to our
incomplete understanding of the underlying mechanisms of this complex phenomenology.
Electrode polarization depends on the ionic conductivity, through the concentration and the
nature of the ionic species in the solution, the temperature, the physico-chemical state of the
electrodes, the ‘history’of their contact with the test liquid and, in general, the physico-chemical
parameters that characterize the bulk phase. This last feature, in particular, would make it
preferable that the method used to correct the measured dielectric spectra takes into account the
presence of exactly that sample which is actually under test. In fact, since electrode polarization
depends on the nature and chemical composition of the sample (and of the electrodes) and both
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Figure 6. The equivalent circuit of the measuring cell, as in figure 3, but with the CPA element
representing the polarization effect in series with the sample impedance.

of them may change over time (in particular for biological samples, or when chemical reactions
take place during the measurements), it would be highly desirable to have a method where
the correction is not performed comparing the measured dielectric spectrum with ‘something
else’ but on the basis of the measured spectrum alone. This result can be obtained modelling
the effect of the polarization as a characteristic electrode impedance with a proper frequency
dependence in series with the sample admittance (figure 6) and fitting the full expression to
the raw experimental data.

This scheme has been extensively employed, usually assuming, for the frequency
dependence of the real and imaginary parts of the electrode impedance, power laws with
fractional exponents [50, 91, 92]. However, the electrode surface impedance can be more
effectively described by using the expression [50, 93–95]

Zp = K−1(iω)−α, (33)

usually indicated as a constant phase angle (CPA) element. This expression has obvious
advantages, compared to simple power laws applied separately to correct the real and imaginary
parts of the measured dielectric constant (and/or conductivity), because the dispersion
relationships are fulfilled. As a consequence, the exponents of the asymptotic power laws
for the real and imaginary parts are not independent (this decreases the number of independent
parameters that have to be obtained from the fitting procedure). In the above expression, K is
a constant and the exponent 0 � α � 1 depends on the characteristics of the electrode surface.
For a perfectly smooth and homogeneous surface (as in the case of a liquid mercury electrode),
the behaviour is purely capacitive and α = 1, while for a ‘porous’ electrode [94] α should be
equal to 1/2. The presence of a relationship between the exponent α and the fractal dimension
of the electrode surface has been postulated by various authors [93, 94, 96–98]. For fractal
electrodes with a known surface fractal dimension, Df , built up by photo-etching, Nyikos and
Pajkossy [97, 98] have obtained the relationship

α = 1

Df − 1
(34)

and have derived, for the constant K in equation (33), the expression

K = fgσ
1−α
0 , (35)

where fg is a purely geometric factor and σ0 is the bulk conductivity of the electrolyte solution.
These simple models have been criticized from both theoretical [96, 99] and numerical
[100] points of view. Furthermore, there are several recent experimental studies showing
that CPA behaviour is not correlated with the ‘electrode geometry’ (meaning roughness on a
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microscopic scale) but rather with the combined effect of adsorption [101, 102] and electrode
inhomogeneities on the ‘nanoscopic’ scale [103] (as probed by Atomic Force Microscopy).
However, although the physical origin of CPA behaviour appears to be different from what
was postulated by the earliest studies on this subject, there is a general consensus on using this
equivalent circuit to model the electrode impedance.

Within this scheme, in the presence of an electrode polarization contribution, the sample
admittance Ys(ω) = 1/R + iωC has to be replaced with the sum

Zm(ω) = Zp(ω) + 1

Ys(ω)
(36)

and, as a result, the measured equivalent complex dielectric constant ε∗
eq(ω) is written as

ε∗
eq(ω) = ε′(ω) − i[ε′′(ω) + (σ0/ε0ω)]

1 + (C0/K)(iω)1−α{ε′(ω) − i[ε′′(ω) + (σ0/ε0ω)]} , (37)

where ε ′(ω) and ε′′(ω) are the real and imaginary parts, respectively, of the sample permittivity
(given, for example, by equation (32)) and σ0 is the low-frequency limit of the conductivity.

In figure 5 the typical dielectric spectrum of a high charge density polyelectrolyte is
shown, measured over a wide frequency range. The steep increase observed in conductivity
at frequencies above 108 Hz (and the corresponding maximum in ε′′ at ≈17 GHz) is due to the
dielectric polarization of water (see figure 1).

At these values of the ohmic conductivity (typical of polyelectrolyte aqueous solutions in
the semi-dilute concentration regime), the electrode polarization effect becomes appreciable at
frequencies �0.1–1 MHz. Polarization produces a steep increase in the values of the measured
ε ′ and, at lower frequencies, a marked decrease in the conductivity σ. The solid lines in figure
5(B) represent the calculated values on the basis of equations (32) and (37), taking into account
the electrode polarization effect. In figure 5(B), showing an enlarged portion of the spectra, the
solid lines are calculated from equation (32) after subtraction of the polarization effect. From
the figure, it is clear that correction for this effect is absolutely necessary in order to obtain
meaningful parameters of the dielectric dispersion due to the polyelectrolyte solution.

3. Background theory for polyelectrolyte solutions

Before delving into the analysis of dielectric spectra on polyelectrolyte solutions, it is important
to present some background on two crucial inter-related issues: counterion condensation and
the chain conformation. In this section, we summarize the main results of the simplest views on
these subjects, as the more sophisticated theories have been reviewed previously [5–11]. For
our purposes here, the simple views suffice, with the caveat that the physics of polyelectrolyte
solutions remains an unsolved problem.

3.1. Counterion condensation

Electrical transport properties of aqueous polyelectrolyte solutions, owing to the strong
electrostatic interactions between counterions in the solution and charged groups on the
polyion chain, greatly differ from those of neutral macromolecular solutions and those of
simple electrolytes [5, 11, 13, 14, 104–112]. Current models for polyelectrolyte solutions
are generally based on counterion condensation, first introduced by Imai and Onishi [107],
Oosawa [5, 110] and later by Manning [13, 111, 112].
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The basic idea is that when the charge density on a linear polyelectrolyte chain exceeds a
critical value, this excess charge must in part be neutralized by the counterions in the solution.
‘Free’ counterions will then ‘condense’ in the vicinity of the chain to such an extent that the
Coulomb repulsion energy of two adjacent charged groups on the chain becomes smaller than
the thermal energy kT . The extent of this condensation should depend, in principle, on the
fine interplay between electrostatic interactions and the change in entropy due to the spatial
confinement of the counterions ‘near’ the polyion. Although, there is a general consensus
on this qualitative picture that is supported by a huge amount of experimental evidence [11],
the details of the physical mechanism from which counterion condensation ensues are still
matters of debate [113–115], and different approaches to the ‘condensation’problem have been
elaborated [113, 116–120]. Indeed, particularly for multivalent counterions, the positions of the
condensed ions are thought to be highly correlated along the chain, forming a one-dimensional
‘Wigner crystal’ [121]. Although the main results of Manning’s counterion condensation
model [13, 111, 112, 122] are fairly well-satisfied by experimental data, the theory appears
insufficient to describe satisfactorily the observed behaviour at finite concentration (see, for
example, [26, 43, 114, 123–126]), and other theories have been proposed [127].

The local conformation of the polyelectrolyte chain is the result of a delicate balance
between chain-solvent interactions and electrostatic repulsion, so that the ‘charged line’ model
is a rather crude approximation. Particularly in semi-dilute solution, effects associated with
the polymer chain conformation become relevant, and their influence on the overall electrical
properties of the polyelectrolyte solutions must be properly considered [119, 128–131].

Manning developed a model for the electrical conductivity of polyelectrolyte solutions
[122, 132–134] that has been the main reference model in the field, mainly by virtue of its
simplicity. Often the Manning model is preferred over other approaches to develop theories
for the colligative and electrical transport properties of linear polyelectrolyte solutions.

Consider a polyelectrolyte solution, made up of polyion chains, each with a degree of
polymerization N (suppose, for simplicity, that each monomer bears only one charged group
of valence zp), contour length L, monomer size b and N|zp|/|z1| counterions of valence z1.

According to the Manning condensation model [13, 111, 112, 122], the system
is characterized by a charge-density parameter, defined as the ratio of the Bjerrum length
(equation (2)) and the charge spacing along the chain,

lB

b
= e2

εwkTb
, (38)

where εw is the dielectric constant of water, kT is the thermal energy and b = L/N is the average
spacing between charged groups on the polyion chain. If the charge spacing is too small, the
electric field becomes so strong that the system can lower its free energy by condensing some
of the counterions on the polyion chain. The Manning criterion for counterion condensation

lB

b
>

1

|zpz1| (39)

states that when the charge density along the chain (|zp|/b) exceeds the largest allowed value,
i.e., when charge spacing becomes <|z1|lB, counterions condense to decrease the effective
charge density to the maximum allowed value. The Manning model predicts that a fraction
1 − f = 1 − b/(lB|z1zp|) of the counterions will condense on the polyion chain to reduce
its effective charge density. Only fraction f = b/(lB|z1zp|) of the counterions are free in
solution, leaving each polyion bearing an effective charge Qp = zpeNf .
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3.2. The de Gennes scaling model

In 1976, de Gennes et al [135] proposed a simple scaling model for the conformation of
polyelectrolytes. Since that time, the model has been verified by small-angle neutron scattering
[136] and has been successfully extended to model polyelectrolyte dynamics [130] (viscosity
and diffusion). On very small scales (of the order of a few monomers), there is insufficient
charge repulsion to modify the chain conformation. On such small scales, the chain adopts
a conformation consistent with the thermodynamic interaction between uncharged monomers
and solvent. In most cases, the solvent is water and the uncharged polymer would not dissolve
in water—this case is referred to as ‘poor solvent’. In such a case, the polyelectrolyte is
locally collapsed, shielding as many monomers as possible from the unfavourable interaction
with water. The size ξe of these collapsed electrostatic blobs of ge monomers is given by a
balance between the electrostatic energy inside the blob and the interfacial free energy of the
electrostatic blob surface [130, 137].

(efge)
2

εξe

≈
(

τξe

b

)2

kT poor solvent. (40)

Here, e is the elementary charge, f is the fraction of monomers bearing an effective charge, ε

is the dielectric constant, τ ≡ (θ−T )/θ is the reduced temperature (θ being the temperature at
which the net interaction between uncharged polymer and water is zero) and b is the monomer
size. The chain is collapsed inside the electrostatic blob, with ξe ≈ b(ge/τ)

1/3. Combining
with equation (40) determines the electrostatic blob size in poor solvent.

ξe ≈ b4/3

f 2/3l
1/3
B

and ge ≈ τb

f 2lB
poor solvent. (41)

Here, lB is the Bjerrum length (equation (2); lB = 7.12 Å in water at 20 ◦C), where the
Coulomb interaction energy between two elementary charges is equal to the thermal energy.
It is instructive to input typical parameter values for polyelectrolytes in poor solvent: b ∼= 7 Å
and f ∼= 0.2, making ξe

∼= 20 Å. A typical reduced temperature is τ ∼= 0.5, making ge
∼= 10.

It is also possible to have a polyelectrolyte in a good solvent that would swell the uncharged
chain and hence swell the electrostatic blob. In this case, the electrostatic blob size is
determined by a balance between the electrostatic energy inside the blob and the thermal
energy kT [130, 135].

(efge)
2

εξe

≈ kT good solvent. (42)

The chain is swollen inside the electrostatic blob in good solvent, with ξe ≈ bg
3/5
e . Combining

with equation (42) determines the electrostatic blob size in good solvent.

ξe ≈ b10/7

f 6/7l
3/7
B

and ge ≈
(

b

f 2lB

)5/7

good solvent. (43)

Inputting the same parameter values as used above (b ∼= 7 Å and f ∼= 0.2) suggests that
ξe

∼= 30 Å and ge
∼= 10. Therefore, the electrostatic blobs in a good solvent contain roughly

the same number of monomers as in poor solvent, but their size is appreciably larger, with
more solvent inside the electrostatic blob. For both good solvent and poor solvent conditions,
the net charge of the electrostatic blob is roughly 2e (fge

∼= 2). These charges most likely
reside at the outer surface of the electrostatic blob.

Both theory [131, 138, 139] and simulation [138, 140] suggest that the local conformation
of polyelectrolytes in poor solvent can be far more interesting than the simple electrostatic
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blob picture. Regions of strong local collapse, with diameter Db, are separated by strongly
stretched strings of length ls in some instances in poor solvent (the pearl necklace). For most of
our purposes, these details are not essential, and we use the simple de Gennes electrostatic blob
picture in our description of polyelectrolyte solutions here. This effectively maps the beads
and strings (or whatever other local conformations [139, 140]) onto a cylinder of diameter ξe.

In a dilute solution in any polar solvent, a flexible polyelectrolyte with no added salt
adopts a highly extended (directed random walk) conformation with length L determined by
the strong electrostatic repulsion between the N/ge electrostatic blobs in the chain.

L ≈ ξe

N

ge

dilute solution. (44)

The distance between chains Rcm in dilute solutions is proportional to the −1/3 power of
concentration c (the number density of monomers).

Rcm ≈
(

N

c

)1/3

dilute solution. (45)

As concentration c is increased, the polyelectrolyte size begins to decrease in the vicinity of
the overlap concentration.

c∗ ≈ N

L3
≈ (ge/ξe)

3

N2
. (46)

In semi-dilute solutions (above the overlap concentration), the polyelectrolytes maintain their
highly extended conformation up to the correlation length ξ, while on larger scales the chains
are random walks [135]. The correlation length ξ is independent of chain length and decreases
as the concentration is increased.

ξ ≈ L
( c

c∗
)−1/2

≈
(

ge

ξec

)1/2

semi-dilute solution. (47)

Owing to the strong repulsion between correlation volumes, semi-dilute polyelectrolyte
solutions with no added salt are divided into correlation volumes that are essentially
identical, as depicted in figure 7. Each correlation volume has g = cξ3 monomers with
fcξ3 counterions.

g ≈ ge

ξ

ξe

semi-dilute solution. (48)

In semi-dilute solutions, the polyelectrolyte chain is a random walk of correlation volumes,
with end-to-end distance R.

R ≈ ξ

(
N

g

)1/2

≈
(

ξe

gec

)1/4

N1/2 semi-dilute solution. (49)

4. Dielectric response of polyelectrolyte solutions

4.1. High-frequency relaxation of water

The high-frequency relaxation, at a frequency of order 10 GHz, is due to the orientation
polarization of water and is associated with the correlated organization of individual water
molecules in extended hydrogen-bonded clusters [15–17], under the influence of the external
electric field [141]. This picture is substantiated by considering that the self-diffusion
coefficient of water D and the dielectric relaxation time of water τH2O have the same activation



Topical Review R1443

ξ

ξ e

Figure 7. The correlation volume in semi-dilute solution (the large circle) is a directed random
walk of electrostatic blobs (small circles) with effectively charged monomers (•). Each effectively
charged monomer has a free counterion (not shown) somewhere in the correlation volume.

enthalpy (18.8 kJ mole−1) corresponding to the breaking of one hydrogen bond, and viscosity
divided by absolute temperature η/T has an activation enthalpy of 18.1 kJ mole−1, indicating
that the same molecular mechanism is responsible for all three processes.

For liquid water, the dependence of the dielectric relaxation time τH2O on temperature is
well accounted for by the Debye equation [1]

τH2O = 4πa3 η

kT
, (50)

where a is the radius of a water molecule and kT is the thermal energy. Using the temperature
dependences of the dielectric relaxation time and the viscosity of water between 0 and 100 ◦C,
the Debye equation determines that a = 1.44 Å for water, independent of temperature. With
or without polyelectrolyte present, the high-frequency relaxation process can be adequately
represented by a single time constant τH2O, as the deviations from a single Debye-type relaxation
function are extremely small. The temperature dependence of the dielectric parameters εw,
ε∞, τ and α for the orientational polarization of water are shown in figure 8.

The presence of charged polymers in water partially modifies the dielectric characteristics
of the orientational water molecule relaxation due to a change of the dielectric constant of
water surrounding the charged sites on the polymer chain. Consequently, the water molecules
close to the polyion will be differently organized from those of the bulk water and will respond
to the electric field with a different relaxation time. However, theoretical calculations and
numerical simulations of the dielectric constant of this bound water have shown that the effect
is confined to a region around the charge that does not extend beyond 2–3 Å and that rapidly
the permittivity of the water reaches the value of pure water. Although the high-frequency
relaxation of water in aqueous polyion solutions is different from that in pure water and the
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Figure 8. Effect of temperature on the parameters describing the dielectric relaxation of water
(see appendix): (•) εw, (�) ε∞ and (◦) τ. The relaxation-time spread parameter α (inset, �) is
almost constant and, in the analysis of relaxation spectra of polyelectrolyte solutions, is generally
assumed to be 1 (Debye relaxation). Values shown in this plot are those reported by Hasted [1],
based on an analysis of the collected available data using a Cole–Cole relaxation function.

dielectric parameters such as relaxation time, relaxation strength and Cole–Cole parameter
depend on polymer concentration [142, 143], the influence is very small on the relaxation of
the polyion and its counterions, which occur at much lower frequencies.

The strong dipole–charge interaction between water molecules and charged groups on the
polymer chains makes the bound water irrotational with a partially ice-like structure [144]. The
hindered orientation of the bound water should give rise to a dielectric dispersion occurring at
frequencies around 100–500 MHz [2], intermediate between that of pure water (17 GHz) and
that of ice (1–5 kHz). The presence of polyelectrolytes can impart a considerable increase of the
free ion concentration in water, influencing, due to the strong localized electric field, the water
molecule organization. A typical change of the dielectric parameters of the orientational water
relaxation induced by NaCl salt at different concentrations is shown in figure 9. However, at the
polyion concentrations of primary interest, the increase of ion concentration due to dissociation
and ionization of the charged groups of the polymer is relatively small, making for very
small changes in the high-frequency dielectric relaxation of aqueous polyelectrolyte solutions.
The dielectric strength associated with the bound water is generally small compared with
the intermediate frequency relaxation of free counterions, making an accurate determination
of the relaxation of bound water difficult for polyelectrolyte solutions. This is unfortunate
because the bound water is believed to play an important role in the biological functions of
many biopolymers, such as DNA and proteins [2]. These aspects are outside the scope of this
review and will not be discussed further here. However, the dielectric relaxations of proteins
occur at sufficiently low frequency that the relaxation of bound water can be isolated [2].
The activation enthalpy of bound water (29 kJ mol−1) [2] is considerably larger than that for
bulk water.

4.2. Intermediate frequency relaxation of free counterions

The relaxation at intermediate frequencies has been studied for many years. Early models
assumed that this relaxation was the result of polarization of bound counterions along the
polyelectrolyte. However, the 1974 work of Dukhin [145, 146] and the 1980 work of Fixman
[147–150] clearly establish the role of the free counterions in the theoretical interpretation of
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Figure 9. Changes induced by the added NaCl electrolyte on the dielectric parameters of the
orientational water relaxation ((◦, •) εw; (�, �) τ), at two different temperatures ((◦, �) 20 ◦C;
(•, �) 40 ◦C) that are a typical example of the effects of dissolved ions on the dielectric behaviour
of water.

intermediate relaxation. Polarization of free counterions in the so-called double-layer have
dominated the models appearing since that time.

Experimentally, Ito and co-workers [151] have used frequency-domain electric
birefringence spectroscopy to show that low-frequency relaxation involves polarization
along the polyelectrolyte chain, while intermediate relaxation corresponds to polarization
perpendicular to the chain backbone. More recent birefringence experiments [23, 24] on
sulfonated polystyrene have shown that the intermediate relaxation time increases as the chain
is neutralized with NaOH for small values of the extent of neutralization, α < 0.6. At low
extents of neutralization, the Na+ counterions are predominantly free, so this increase in
relaxation time strongly suggests that the intermediate relaxation involves free counterions.
Further increase in the extent of neutralization essentially adds counterions that are condensed
on the chain backbone and the relaxation time becomes independent of α [23] for α > 0.5.
Furthermore, as the counterion is varied, the intermediate relaxation frequency is observed
to be proportional to the mobility of free counterions in water [24]. These birefringence
measurements comprise the most direct experimental proof that the intermediate relaxation
involves polarization of free counterions.

4.2.1. The free-counterion polarization model of Ito. Based on their experimental observation
of polarization perpendicular to the chain backbone [151], Ito and co-workers proposed a simple
model for intermediate frequency relaxation [22]. In dilute solution, the free counterions can
polarize by free diffusion in three-dimensional space to a scale of the order of the distance
between chains (equation (45)).

τion ≈ R2
cm

6D
≈ N2/3

6Dc2/3
dilute solution. (51)

Here, D is the diffusion coefficient of the counterion in solution. The polarizability of each
free counterion, αion, is determined by the square of their charge e2 (for univalent counterions)
and the polarization distance Rcm.

αion ≈ e2R2
cm

kT
≈ e2N2/3

kTc2/3
dilute solution. (52)
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The dielectric increment of the intermediate relaxation �ε in dilute solution is simply the
product of the number density of free counterions fc and their polarizability.

�ε ≈ fcαion ≈ fe2N2/3c1/3

kT
≈ flBεN2/3c1/3 dilute solution. (53)

In semi-dilute solution, the free counterions can polarize by simple diffusion within
the correlation volume. The time scale for such a relaxation τion is the time required for
counterions to diffuse a distance of the order of the correlation length in three-dimensional space
(equation (47)).

τion ≈ ξ2

6D
≈ ge

6Dξec
semi-dilute solution. (54)

The free counterion polarizability is determined by their charge e and polarization distance ξ.

αion ≈ e2ξ2

kT
≈ e2ge

kT ξec
semi-dilute solution. (55)

The dielectric increment of the intermediate relaxation is once again the product of the number
density of free counterions and their polarizability.

�ε ≈ fcαion ≈ fe2ge

kT ξe

≈ flBε
ge

ξe

semi-dilute solution. (56)

The fraction of monomers bearing an effective charge f can be obtained by either
combining equations (51) and (53) in dilute solution or equations (54) and (56) in semi-dilute
solution.

f ≈ �ε

6DτionlBεc
. (57)

4.2.2. Comparison with data. One of the most extensively studied polyelectrolytes is NaPSS,
and the data for the intermediate relaxation time of NaPSS with no added salt at various
concentrations and molecular weights are shown in figure 10, where two concentration regimes
are evident. At low concentrations, τion ∼ c−2/3 as expected by equation (51). At high
concentrations, τion ∼ c−1 as expected by equation (54). The data for the intermediate
relaxation dielectric increment �ε of NaPSS at various concentrations and molecular weights
are shown in figure 11. These data also exhibit the expected crossover in the vicinity of c∗.
Low concentrations have �ε ∼ c1/3 as expected by equation (53), while high concentrations
have �ε nearly independent of concentration, as expected by equation (56).

The crossover concentrations between the two regimes for both dielectric increment and
relaxation time are plotted as a function of the degree of polymerization in figure 12. Also
plotted in figure 12 are the overlap concentrations estimated from the concentration at which the
specific viscosity is unity [152] and the concentration where the wavevector of the peak in small-
angle x-ray scattering crosses from c1/3 to c1/2 (another measure of the overlap concentration)
[153]. Figure 12 shows that the crossover concentrations for dielectric increment and relaxation
time, while not identical, are quite comparable with the overlap concentration c∗ estimated by
other methods and are roughly proportional to N−2, as predicted by equation (46).

4.3. Low-frequency relaxation of bound counterions

Low-frequency relaxation has been studied less extensively than intermediate frequency relaxa-
tion. The principal reason for this is that conductivity and electrode polarization issues make
the low-frequency relaxation challenging to resolve. The polyelectrolyte chain is expected
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Figure 10. Concentration dependence of the intermediate relaxation time of NaPSS solutions in
water, for different degrees of polymerization N. Data are those of Ito [22] at 20 ◦C (N = 87 (◦);
N = 170 (�); N = 350 (�); N = 500 (�); N = 1000 (•); N = 2000 (�); N = 3800 (�)),
Mandel [49] at 21 ◦C (N = 860 crossed squares; N = 1700 crossed circles) and Bordi [25] at
20 ◦C (N = 5800 (+)).
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Figure 11. Concentration dependence of the intermediate relaxation dielectric increment of NaPSS
solutions in water. Symbols are the same as in figure 10.

to be stationary on the time scale of low-frequency dielectric relaxation. Since intermediate
frequency relaxation involves polarization of the free counterions and occurs on much shorter
time scales, low-frequency dielectric relaxation most likely originates from polarization of the
condensed counterions along an essentially stationary polyelectrolyte chain.

There are (1 − f )N condensed counterions on each chain. Fluctuations of condensed
counterions [108, 109] should create charges of order ±e[(1 − f )N]1/2 occurring over a
distance comparable with the end-to-end distance of the chain R. The induced dipole moment
from thermal fluctuations is

α ≈ e2(1 − f )NR2

kT
≈ lBε(1 − f )NR2. (58)
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Data are estimates from (�) SAXS [153], (◦) viscosity [152], (�) the intermediate relaxation
time data of figure 10 and (�) the dielectric increment data of figure 11. The line has the slope of
−2 as expected by equation (46).

Assuming that each chain polarizes independently, the dielectric increment for low-
frequency dielectric relaxation should be the product of the induced dipole moment of a single
chain α and the number density of chains (c/N).

�ε ≈ lBε(1 − f )cR2. (59)

In dilute solutions, the relevant chain size is given by equation (44), while in semi-dilute
solutions the chain size is given by equation (49). Polarization of condensed counterions
should give a dielectric increment

�ε ≈ lBε(1 − f )c

(
ξeN

ge

)2

≈ lBε(1 − f )
ge

ξe

c

c∗ dilute solution, (60)

�ε ≈ lBε(1 − f )N

(
ξec

ge

)1/2

≈ lBε(1 − f )
ge

ξe

( c

c∗
)1/2

semi-dilute solution. (61)

The dielectric increment of low-frequency relaxation has been reported by Mandel [49] for
two molecular weights of NaPSS and the data are shown in figure 13. The data do not extend
over a wide concentration range, and that range spans c∗ for both samples. Hence, it is not
surprising that the data exhibit an apparent exponent for the concentration dependence of �ε

that is between the 1/2 expected in semi-dilute solution and the unity expected in dilute solution.
However, the apparent dependence of �ε on molecular weight is considerably stronger than
expected. The large corrections involved in isolating the low-frequency relaxation may be
responsible for this and more data are clearly needed.

Figure 14 compares the low-frequency dielectric relaxation times (open symbols) with the
intermediate-frequency relaxation times (filled symbols), the polyelectrolyte chain relaxation
times (solid lines) and the correlation volume relaxation times (broken line). Polyelectrolyte
chain relaxation times were estimated as R2

g/D using the diffusion coefficients reported by
Oostwal et al [154] on the same two NaPSS samples (M = 177 000 has D = 6.2×10−12 m2 s−1

and M = 354 000 has D = 3.0×10−12 m2 s−1, independent of concentration in the semi-dilute
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Figure 13. Dielectric increment from the low-frequency dielectric relaxation of NaPSS [49].
M = 177 000 (©) and 354 000 (�). The lines have slopes between unity expected below c∗
and 1/2 expected above c∗.
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Figure 14. Relaxation times from the low-frequency (τbound , ◦, �) and intermediate frequency
(τion, •, �) dielectric relaxations of NaPSS (M = 177 000 are circles and M = 354 000 are
squares) [49]. The lines associated with the intermediate frequency data have slopes of −2/3
below c∗ and −1 above c∗ (see figure 10). The solid lines at the top of the figure are the longest
polyelectrolyte relaxation times estimated from diffusion data on the same polymers [154]. The
broken line is the estimated relaxation time of a correlation volume. Since the low-frequency
relaxation times are much shorter than any of the chain relaxation times, the low-frequency
relaxation is attributed to fluctuations of condensed counterions along an immobile chain.

unentangled regime) and the SANS measures of concentration (c in moles of monomer per
litre) and molecular weight (M in g mole−1) dependences of the radius of gyration (Rg in nm)
of NaPSS in semi-dilute solution [155–157].

Rg = 0.032M1/2c−1/4. (62)

It is clear from figure 14 that low-frequency dielectric relaxation has a relaxation time
that is shorter than any of the polyelectrolyte chain relaxation times. Low-frequency dielectric
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relaxation time is also insensitive to concentration, even at the highest concentrations studied,
in contrast to the polyelectrolyte chain relaxation times in semi-dilute solution, which show
concentration dependences [129, 130, 152, 158]. The relaxation time of the low-frequency
relaxation is determined by the friction coefficient ζ for condensed counterions moving along
the stationary polyion backbone.

τbound ≈ ζL2

6kT
. (63)

Using the chain contour length (equation (44)) we determine the relaxation time for
polarization of condensed counterions.

τbound ≈ ζ

6kT

(
ξeN

ge

)2

(64)

We can estimate the friction coefficient by combining equations (59) and (63).

ζ ≈ 6(1 − f )lBεckT
τbound

�ε
. (65)

Using the data of Mandel [49], we estimate that ζ = 3×10−7 g s−1 for condensed sodium
counterions on NaPSS in dilute solution at 21 ◦C, roughly a factor of 100 larger than the ζ for
free sodium counterions [159] (kT/D). If correct, this estimate casts some doubts on the idea
that condensed counterions organize a Wigner crystal [121].

5. Electrical conductivity of polyelectrolyte solutions

Here, we review the electrical conductivity of aqueous polyelectrolyte solutions, in light of
the counterion condensation theory of section 3.1, using the scaling concepts of section 3.2 in
the description of the polyion chain in different concentration regimes. Electrical conductivity
as a useful probe of the transport of charged objects in an external electric field has a long
history. Recently, significant advances have been made, since our understanding of the coupling
between chain conformation and counterion condensation has improved.

We focus on the ac electrical conductivity σ0, measured at low frequencies, for solutions of
charged particles uniformly dispersed in a continuous (conducting or non-conducting) medium.
In practice, this conductivity measurement does not require the sophisticated equipment
needed for dielectric measurements at high frequencies, discussed in section 2. Inexpensive
conductivity meters are available that employ multiple low frequencies (to ensure that the
low frequency limit is realized), temperature compensation and a four-electrode design
(see section 2.3) to provide conductivity measurements on aqueous solutions with high
precision.

Quite generally, the conductivity σ0 is due to the sum of contributions of all the charge
carriers in the system, given by

σ0 =
∑

i

(|zi|e)niµi, (66)

where zi is the valence, ni the number concentration and µi the mobility (ratio of velocity
and electric field) of the different carriers. This equation can be rewritten in more convenient
units as

σ0 =
∑

i

ziciλi, (67)
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where ci is the concentration (in mol cm−3) and λi is the specific conductance (in
�−1 cm2 mol−1) of each carrier in the solution.

For polyelectrolyte solutions without salt and in the presence of counterion condensation,
equation (67) reads

σ = z1c1λ1 + zpcpλp, (68)

where the subscripts 1 and p refer to counterions and polyions, respectively. For univalent
counterions (z1 = 1), the following relationships hold, c1 = fc, zp = fN and cp = c/N,
where c is the molar concentration of monomer (moles of monomer cm−3) and N is the number
of monomers per chain. Equation (68) becomes

σ = fc(λ1 + λp) (69)

for univalent counterions. Equation (69) depends on three parameters: the fraction f of
free counterions and the equivalent conductances, λ1 and λp, of counterions and polyions,
respectively. The various models for polyelectrolyte conductivity make different predictions
for these three parameters.

5.1. Manning model for dilute solutions

Following the Manning derivation [122, 132–134], the conductivity of a dilute salt-free
polyelectrolyte solution must be modified to account for the reduced mobility of the counterions
in the presence of the polyion

σ = fc
D1

D0
1

(λ0
1 + λp), (70)

where D0
1 and D1 are the diffusion coefficients of counterions in the limit of infinite dilution

and in the presence of polyions, respectively, and λ0
1 is the equivalent conductance of free

counterions without the polyions present. Manning [13] derived for D1/D
0
1 the value 0.866.

The equivalent conductance of the polyion λp can be written as the ratio of the total charge
Qp = z1efN on the polyion chain to the total electrophoretic coefficient fEtot .

λp = Fµp = F
Qp

fEtot

, (71)

where F = eN is the Faraday number, with N being the Avogadro number.
A polyion in dilute solution is surrounded by an oppositely charged atmosphere whose

spatial distribution is distorted and becomes asymmetric in the presence of an external electric
field. As a consequence, in calculating the electrophoretic coefficient, the effect of the resulting
‘asymmetry field’ must be summed up to the external electric field effect [160, 161].

According to Manning [122], the total electrophoretic coefficient fEtot , corrected for the
‘asymmetry field’ effect, due to the distortion of the ionic atmosphere surrounding the polyion
and acting as a field oppositely directed to the external electric field, can be written as

fEtot =
[
fE + Qp

µ0
1

(
1 − D1

D0
1

)]
D0

1

D1
, (72)

where µ0
1 is the counterion mobility in water (without polyions present) and fE is the

electrophoretic coefficient without the asymmetry field correction.
The resulting equivalent polyion conductance λp is then given by [122]

λp =
(

FQp

D1

D0
1

) [
fE + Qp

µ0
1

(
1 − D1

D0
1

)]−1

. (73)
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To obtain the coefficient fE, a model for the chain is needed. To this end, if the polyion
is considered as an ensemble of Nb simple, spherical, structural units (beads) of radius Rb,
taking into account the effect due to hydrodynamic interactions, the electrophoretic coefficient
can be written as [162, 163]

fE = Nbζb

1 + (ζb/6πηNb)
∑Nb

i

∑Nb

j �=i
〈r−1

ij 〉
, (74)

where ζb = 6πηRb is the friction coefficient, with η being the viscosity of water and rij the
distance between different structural units in the specified configuration.

In Manning’s picture, the structural units are the effectively charged monomers (after
condensation) on the polyion chain and the hydrodynamic interactions between them are
mediated by the electrostatic interaction with the surrounding (oppositely charged) counterion
atmosphere that, under the influence of the external field, drags the solvent in the opposite
direction (charged solvent effect). Within this picture, hydrodynamic interactions between
units that are further apart than a Debye length (rD, equation (3)) are ‘screened’, while
stretches of the chain of length comparable with rD should be considered fully extended
[122]. By introducing this assumption as an exponential cutoff, exp(−rij/rD), within the
double summation in the denominator of equation (74), this sum can be easily summed up and
the electrophoretic friction coefficient calculated as [122]

fE = Nbζb

1 + (ζb/3πηb)|ln(b/rD)| ≈ 3πηNbb

|ln(b/rD)| . (75)

The final expression for the electrical conductivity of a salt-free polyelectrolyte solution in the
presence of counterion condensation, within the Manning model [122], reads

σ = fc
D1

D0
1

{
λ0

1 +
(

Fz1efN
D1

D0
1

) [
z1efN

µ0
1

(
1 − D1

D0
1

)
+ 3πηNbb

|ln(b/rD)|
]−1

}
. (76)

5.1.1. Comparison with data in dilute solutions. Figure 12 shows clearly that the overlap
concentration of high-molecular-weight polyelectrolyte solutions is very small (see equation
(46)). This makes dilute aqueous polyelectrolyte solutions difficult to study, particularly in the
salt-free limit. In an inert atmosphere, the fact that water dissociates to make 2×10−7 moles of
small ions per litre of water puts a practical lower bound on the ‘salt-free’concentrations. When
the solution is exposed to air, this situation is even worse, because carbon dioxide reacts with
water to form carbonic acid [164], which then dissociates to impart a small ion concentration
of order of 4 × 10−6 moles of small ions per litre (the pH of ultra-pure water exposed to air
is 5.4) [165]. Hence, for aqueous solutions exposed to air, there is a practical lower bound for
‘salt-free’ solutions of order 10−4 moles of charged monomers per litre.

Conductivity has been a primary means of characterizing polyelectrolyte solutions
for many years [166]. Wandrey et al [123, 167–169] have recently made extensive
use of the Manning model for conductivity of dilute polyelectrolyte solutions in inert
atmospheres and compared the results with ion selective electrode measurements of
counterion activity. Representative results are shown in figure 15, for solutions
of poly(vinylbenzyltrialkylammonium) chloride of various chain lengths. Equivalent
conductance is defined as

� = σ − σs

c
, (77)
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Figure 15. Counterion activity coefficient (a) and equivalent conductance (b) of
poly(vinylbenzyltrialkylammonium) chloride aqueous solutions (N = 27 are �, N = 56
are �, N = 142 are �, N = 181 are • and N = 407 are ◦). Data are from [168].

where σs is the conductivity of the solvent. The counterion activity coefficient and equivalent
conductance both increase as the concentration is lowered below the overlap concentration
c∗ because the entropy of dissociation grows as the concentration is lowered [120, 135,
170, 171].

5.2. Scaling models for semi-dilute solutions

The Manning model has been recently extended, for flexible polyelectrolytes and in the absence
of added salt, to finite concentration systems (dilute and semi-dilute regimes) [43, 125, 172]
on the basis of the scaling picture for the chain conformation of a polyelectrolyte in solution
[119, 128–131]. Scaling concepts, successfully used for uncharged polymers, have been
applied to the description of the chain conformation of polyelectrolyte solutions in different
conformation regimes by de Gennes et al [135, 173], Odijk [170], Grosberg and Khokhlov
[128] and, more recently, by Rubinstein and co-workers [119, 129–131]. In this picture (see
section 3.2), a polyion can be represented as a chain of ‘electrostatic blobs’, with the statistics
of the chain inside the blob determined by the thermodynamic interaction between uncharged



R1454 Topical Review

polymer and solvent. The number of monomers and the number of condensed counterions
inside an electrostatic blob, i.e., the effective charge, and the blob size are determined by a
balance between polymer–solvent and electrostatic interactions inside the blob [119, 129–131].

At very low concentration, in the dilute regime with no added salt, the Debye screening
length (equation (3)) is much larger than the distance between chains and charges interact via
the unscreened Coulomb potential. The polymer chain is represented by a highly extended
configuration of N/ge electrostatic blobs of size ξe. Each electrostatic blob contains ge

monomers and bears an effective electric charge z1efge (f is the fraction of ‘free’ counterions)
of order unity. Any effect of counterion condensation is incorporated into the concept of the
electrostatic blob [129, 130].

Following the derivation of Manning, the elementary unit that contributes to the overall
friction coefficient is the electrostatic blob. The friction coefficient of a fully extended (rod-
like) configuration of N/ge beads of size ξe can be calculated as [43, 174]

fE = 3πηNξe

ge ln(N/ge)
, (78)

which is the same result obtained by Manning (equation (75)) except that now the ‘structural
units’ are the electrostatic blobs (not single monomers) and the assumption of an electrostatic
cutoff length for hydrodynamic interactions (rD) is not needed anymore.

Hence, the full expression for the electrical conductivity in dilute solutions and in a good
solvent condition reads [43, 124]

σ = fc
D1

D0
1

{
λ0

1 +
(

Fz1efN
D1

D0
1

) [
z1efN

µ0
1

(
1 − D1

D0
1

)
+ 3πηNξe

ge ln(N/ge)

]−1
}

dilute solution.

(79)

In semi-dilute solutions, the polyion chain is modelled as a random walk of N/g correlation
blobs of size ξ, each of them containing g monomers. Each correlation blob bears an electric
charge z1efg and the whole chain, of contour length L = Nξ/g, bears a charge Qp = z1efN.

Due to the strong electrostatic interactions within each correlation blob, the chain is an
extended assembly of electrostatic blobs inside the correlation volume (for r < ξ). For r > ξ,
electrostatic and hydrodynamic interactions are screened and the chain is a random walk of
correlation blobs of size ξ [129, 130]. The ‘structural unit’ that should be used in calculating the
friction coefficient (equation (74)) is the correlation blob. Taking into account the asymmetry
field effect [122, 160, 161], the friction coefficient for a random coil [163] of N/g statistical
units of length ξ is given by

fE = Nζξ/g

1 + 8
3

√
N/g(ζξ/

√
6π3ηξ)

, (80)

where the friction coefficient ζξ of a correlation blob can be easily calculated, in analogy to
equation (78), as

ζξ = 3πηξ

ln(g/ge)
, (81)

since, within a correlation blob, the chain is a fully extended configuration of g/ge electrostatic
blobs of size ξe = ξ/(g/ge). The polyion equivalent conductance is obtained by combining
equations (73) and (80).

λp =
(

Fz1efN
D1

D0
1

) [
z1efN

µ0
1

(
1 − D1

D0
1

)
+ Nζξ/g

1 + 8
3

√
N/g(ζξ/

√
6π3ηξ)

]−1

. (82)
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Figure 16. Comparison between predicted and observed polyion equivalent conductances λp

for poly(L-lysine) at T = 30 ◦C. The polyion concentrations investigated are below the overlap
concentration c∗ for the lower molecular weight (Mw = 4000 is ♦) and above c∗ for the higher
one (Mw = 167 000 is �) [43]. (A) An equivalent conductance λp predicted by the Manning
model (equation (73), ——) assuming Manning condensation with f = b/lB = 0.48 and the
values calculated from the measured conductivity σ within the same model (equation (76)). (B) An
equivalent conductance λp calculated from the measured conductivity within the scaling approach
in the appropriate dilute (equation (79)) and semi-dilute (equation (83)) regimes. The solid lines
represent fits, with f used as a concentation-independent adjustable parameter, in the two different
concentration regimes. For the Mw = 4000 sample, the line is equation (79) with f = 0.67 and,
for the Mw = 167 000 sample, the line is equation (83) with f = 0.39.

In this case, for good solvent conditions, the full expression for electrical conductivity in
semi-dilute solutions is written as [43, 124]

σ = fc
D1

D0
1

{
λ0

1 +
(

Fz1efN
D1

D0
1

) [
z1efN

µ0
1

(
1 − D1

D0
1

)
+ Nζξ/g

1 + 8
3

√
N/g(ζξ/

√
6π3ηξ)

]−1 }

semi-dilute solution, (83)

with ζξ given by equation (81).
A comparison between the Manning model and the prediction of the scaling model for

semi-dilute polyelectrolyte solutions is shown in figure 16. Here, the counterion contribution to
conductivity has been subtracted, using each model, to provide the equivalent conductance from
the polyion, λp. Such data are shown for two poly(L-lysine) samples [43] with Mw = 4000 and
167 000. The Manning model predicts that the polyion equivalent conductance is independent



R1456 Topical Review

of molecular weight [122] and, hence, there is a single prediction based on equations (73) and
(76) shown as the solid line in figure 16(A). The line curves because the Debye length depends
on concentration (see equation (76)) and this prediction does not agree with either data set,
although the high concentration data for the dilute sample (with Mw = 4000) are reasonably
well predicted. The fact that the Manning model fails for the Mw = 167 000 data is hardly
surprising, since these data are all above c∗, while the Manning model assumes dilute solution.
However, the failure of the Manning model for the Mw = 4000 data is noteworthy since these
data are all below c∗. Figure 16(B) compares predictions and data from conductivity within the
scaling model (equations (79) and (83)) considering counterion condensation. The dependence
on molecular weight and concentration are markedly improved when the scaling approach is
used to describe the chain conformation. λp is predicted and observed to be independent of
polyion concentration in dilute solution (equation (79)) and adopts a very weak concentration
dependence in semi-dilute solution (equation (83)). The slight increase in λp on dilution in
dilute solution likely reflects the increase of f due to the increased entropy of free counterions,
seen more clearly in figure 15.

Under poor solvent conditions, the configuration of the polyelectrolyte chain can be better
described in terms of the ‘necklace globule’ model [119, 131]. In this model, the competition
between the strong hydrophobic polymer–solvent interactions and the electrostatic repulsion
creates an electrostatic instability (analogous to the Rayleigh breakup of a charged drop) that
forces the local conformation of the polyelectrolyte into a sequence of charged globules (beads),
connected by more elongated stretches of the chain (strings).

In the dilute regime, the electrostatic screening length is much larger than the distances
between chains and larger than the whole necklace length. The ‘structural unit’ in the Manning
picture is now ‘a bead plus a string’, with ls the string length, Db the bead diameter and with
Db  ls. Assuming that the friction is concentrated in the beads and following the Manning
derivation (equations (74)–(75)) with the exponential cutoff which is now equal to the total
length of the necklace L = Nbls, the friction coefficient reads [125]

fE = 3πηNbDb

1 + (Db/ls)|ln(Nb)| . (84)

In the semi-dilute regime, two different conditions are possible. When, in the lower
concentration range, the condition ls < ξ < L on the correlation length ξ holds (the ‘string
controlled’ semi-dilute regime), the electrophoretic coefficient is given by equation (80), but
with the friction coefficient ζξ written as [125]

ζξ = 3πηNbDb

1 + (Db/ls)|ln(ls/ξ)| . (85)

At higher concentrations, where L � ξ ≈ ls (the ‘bead controlled’ semi-dilute regime), the
friction coefficient ζ of the correlation length reduces to the friction coefficient of a single bead
and it is hence given by [125]

ζξ = 3πηDb. (86)

Again, substituting back in the expression for the electrophoretic coefficient fE (equation
(80)) the appropriate friction coefficient ζξ (equation (85) or (86)), and proceeding backward
in the usual way, the complete expression for the electrical conductivity of the solution is
obtained.

Colby et al [172] proposed that the asymmetry field could be safely neglected in a semi-
dilute solution, since polarization in neighbouring correlation volumes should have offsetting
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effects. In the absence of added salt, the conductivity of a semi-dilute polyelectrolyte solution
could be described by considering a polyion equivalent conductance

λp = Fz1efg ln(g/ge)

3πηξ
. (87)

This leads directly to a simple prediction for the conductivity of semi-dilute polyelectrolyte
solutions neglecting the asymmetry field effect [172].

σ = fc

(
λ0

1 + Fz1efg ln(g/ge)

3πηξ

)
semi-dilute solution. (88)

The two predictions for conductivity of semi-dilute polyelectrolyte solutions, either
including (equation (83)) or omitting (equation (88)) the asymmetry field effect, have been
compared with experimental data and found to give satisfactory descriptions [124]. A computer
simulation of polyelectrolyte conductivity would be particularly useful in deciding whether
either of these predictions are robust.

6. Conclusions and outlook

Dielectric and conductometric methods have enormous potential for characterizing the effective
charge of polyelectrolyte chains in solution. However, that potential has not yet been fully
realized for dielectric methods. Figure 17 compares the fraction of monomers bearing an
effective charge determined by conductivity (equation (88)), dielectric spectroscopy (equation
(57)) and osmotic pressure π. The latter estimates f from

f = 1.8π

ckT
, (89)

where the prefactor of 1.8 was chosen to match the f determined from conductivity
measurements (whereas the Katchalsky cell model [6] expects this coefficient to be 2).
Figure 17 shows that the agreement between osmotic pressure and conductivity is within the
small uncertainties in each technique, for semi-dilute solutions of NaPSS and NaPAMS, with
no added salt. This is important, as it means that the scaling models for conductivity can be used
to calculate f and that value can be expected to agree with the f from osmotic pressure within a
prefactor of order unity. The upturn in apparent f at high concentrations has been suggested to
be caused by release of counterions from the polyelectrolyte, owing to the increased dielectric
constant of the medium when strongly charged polyions (with many condensed counterions)
are present in significant concentrations in water [25]. However, the Katchalsky cell model
also predicts a similar upturn in osmotic coefficient at high concentrations [175–177].

While conductivity is relatively simple and easy to interpret in terms of the effective charge,
dielectric results have thus far been less reliable. The f calculated from the intermediate
frequency dielectric relaxation in semi-dilute solution (equation (57)) shows considerabe
scatter. The dielectric determinations of f are also considerably larger than those from osmotic
pressure or conductivity, but this is as expected, since scaling models have been utilized which
ignore prefactors of order unity. The dielectric determinations of f could be divided by a factor
of 2 or 3 to bring them in better agreement with the other determinations. Unfortunately, the
large scatter in those data preclude any robust conclusions from the comparison plot. The
scatter originates from the difficulties in isolating the intermediate frequency relaxation from
the relaxations at higher and lower frequencies, as discussed in section 2.2. Only through
systematic experimentation can trends be isolated, and our recent work [25] (squares in
figure 17) suggests that the trend observed by dielectric spectroscopy in the concentration
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Figure 17. Concentration dependence of effective charge for the sodium salts of two sulfonated
polyelectrolytes: open symbols are NaPAMS and filled symbols are NaPSS. Data are from osmotic
pressure results using equation (89) ((◦,•) [180] and (�, �) [181]); upside-down triangles [182]
and hexagons [172] are from conductivity measurements using equation (88); squares [25] and
diamonds [22] are from the intermediate frequency dielectric relaxation in semi-dilute solution
using equation (57).

dependence of effective charge may differ from that reported previously by osmotic pressure
and conductivity.

The current situation for analysis of the low-frequency dielectric dispersion is even worse.
More data are desperately needed to guide the development of theory for the low-frequency
relaxation.

The contributions of dipoles along the chain, either due to polar side chains or counterions
condensed on the polyion, should have a dielectric relaxation somewhere in the interesting
range of frequencies. Such relaxations, along with the relaxation of bound water, may well
interfere with both the intermediate and low-frequency relaxations. Understanding such
relaxations may be essential before dielectric methods can be used routinely to determine
effective charge on polyelectrolytes in solution. The dielectric methods are powerful, as
they determine two parameters (a dielectric increment and a relaxation time scale). The
dielectric increment can be used to determine the solvent quality in a poor solvent [25] or to
unambiguously identify good solvent conditions [26]. However, interpretation of dielectric
measurements is simply not at the level of the simple conductivity measurements.

More work needs to be done to develop models for interpreting conductometric and
dielectric measurements on polyelectrolyte solutions. Computer simulations would be helpful
in guiding that theoretical effort to better understand the molecular aspects of polarization at
different frequencies. Monte Carlo simulations are currently underway [178] but molecular
dynamics simulations with an explicit solvent are not quite possible yet [179].

Appendix. Dielectric parameters of the NaCl solutions to be used as standard solutions

The parameters εw, ε∞, τH2O, σ0 that appear in equation (31) can be easily calculated for NaCl
solutions at the different molarities and temperatures by means of the following polynomials,
with the coefficients given in table A.1 [71].
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Table A.1. Coefficients of the polynomials for calculating the dielectric parameters of NaCl
solutions, as a function of NaCl concentration and temperature [71].

t0 = 87.74; t1 = −4.0008 K−1; t2 = 0.0009398 K−2; t3 = 1.41 × 10−6 K−3

c1 = −0.2551 l mol−1; c2 = 0.05151 l2 mol−2; c3 = −0.006889 l3 mol−3

a0 = 1.1109 × 10−10 s; a1 = −3.824 × 10−12 K−1 s; a2 = 6.938 × 10−14 K−2 s; a3 = −5.096 × 10−16 K−3 s
b1 = 0.001463 K−1 l mol−1; b2 = −0.04896 l mol−1; b3 = −0.02967 l2 mol−2; b4 = 0.005644 l3 mol 3

sc1 = 10.394 l mol−1; sc2 = −2.3776 l2 mol−2; sc3 = 0.68258 l3 mol−3;
sc4 = −0.13538 l4 mol−4; sc5 = 0.010086 l5 mol−5

st1 = 3.02 × 10−5 S m−2 K−1 l mol−1; st2 = 3.922 × 10−5 S m−2 K−2 l mol−1;
st3 = 1.721 × 10−5 S m−2 K−1 l2 mol−2; st4 = −6.584 × 10−6 S m−2 K−2 l2 mol−2

s1 = −0.01962 K−1; s2 = 8.08 × 10−5 K−2

Static dielectric permittivity εw:

εw = εw1[1 + c1C + c2C
2 + c3C

3], (A.1)

where εw1 is given by

εw1 = t0 + t1T + t2T
2 + t3T

3. (A.2)

T is the temperature in centigrade, C is the concentration in mol l−1.
Relaxation time τH2O:

τH2O = τ1[1 + b1CT + b2C + b3C
2 + b4C

3] (A.3)

with τ1 defined as

τ1 = 1

2π
[a0 + a1T + a2T

2 + a3T
3]. (A.4)

Conductivity σ:

σ = σc[1 − σt + s1�T + s2(�T )2], (A.5)

where �T = 25 − T , and σt and σc are given by

σt = st1�TC + st2(�T )2C + st3�TC2 + st4(�T )2C2, (A.6)

σc = sc1C + sc2C
2 + sc3C

3 + sc4C
4 + sc5C

5. (A.7)
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